coth - definitie. Wat is coth
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is coth - definitie

MATHEMATICAL FUNCTION RELATED WITH TRIGONOMETRIC FUNCTIONS
Osborne's rule; Hyperbolic tangent; Hyperbolic sine; Hyperbolic cosine; Coth; Csch; Sech (function); Hyperbolic function; Hyperbolic secant; Hyperbolic trigonometric function; Tanh; Hyperbolic trig identities; Hyperbolic sin; Hyperbolic cosecant; Hyperbolic cotangent; Hyperbolic polar sine; Hyperbolic map; Hyperbolic trig functions; Hyperbolic trigonometric functions; Osborne rule; Hyperbolic curve; Hyperbolic sinusoid; Osborn's Rule; Sinh(x); Cosh(x); Tanh(x); Hyperbolic tan; Hyperbolic identities; Ctanh; Sinus hyperbolicus; Hyperbolic tangent function; Hyperbolic sinus; Coth(x); Osborn's rule; Cosh (mathematical function); Cosinus hyperbolicus; Tangens hyperbolicus; Cosecans hyperbolicus; Cotangens hyperbolicus; Secans hyperbolicus; Hyberbolic sine; Hyberbolic cosine; Hyberbolic tangent; Hyberbolic cotangent; Hyberbolic secant; Hyberbolic cosecant; Cosech; Sh (mathematical function); Ch (mathematical function); Th (mathematical function); Cth (mathematical function); Sinh (mathematical function); Hyperbolic ‍secant; Tanh (mathematical function); Hyper-sine
  • u}}.
  • ''e''<sup>−''x''</sup>}}
  • ''e''<sup>−''x''</sup>}}
  • animated version]] with comparison with the trigonometric (circular) functions).

coth         
[k??, k?t'e?t?]
¦ abbreviation hyperbolic cotangent.
Origin
from cot3 + -h for hyperbolic.
Yacolla (garment)         
Yacolla (coth); Yacolla (cloth)
Yacolla was an outer garment in the Inca men's clothing that was similar to a mantle worn over the Uncu.
Hyperbolic functions         
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola.

Wikipedia

Hyperbolic functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity.

The basic hyperbolic functions are:

  • hyperbolic sine "sinh" (),
  • hyperbolic cosine "cosh" (),

from which are derived:

  • hyperbolic tangent "tanh" (),
  • hyperbolic cosecant "csch" or "cosech" ()
  • hyperbolic secant "sech" (),
  • hyperbolic cotangent "coth" (),

corresponding to the derived trigonometric functions.

The inverse hyperbolic functions are:

  • area hyperbolic sine "arsinh" (also denoted "sinh−1", "asinh" or sometimes "arcsinh")
  • area hyperbolic cosine "arcosh" (also denoted "cosh−1", "acosh" or sometimes "arccosh")
  • and so on.

The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is twice the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.

In complex analysis, the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are entire functions. As a result, the other hyperbolic functions are meromorphic in the whole complex plane.

By Lindemann–Weierstrass theorem, the hyperbolic functions have a transcendental value for every non-zero algebraic value of the argument.

Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert. Riccati used Sc. and Cc. (sinus/cosinus circulare) to refer to circular functions and Sh. and Ch. (sinus/cosinus hyperbolico) to refer to hyperbolic functions. Lambert adopted the names, but altered the abbreviations to those used today. The abbreviations sh, ch, th, cth are also currently used, depending on personal preference.